
BASUDEV GODABARI DEGREE COLLEGE, KESAIBAHAL
Department of Computer Science

SELF STUDY MODULE"

Module Details:
.Class-2nd Semester (2020-21) Admission Batch
Subject Name: COMPUTER SCIENCE
.Paper Name Pragramming using C++

UNIT-2 :STRUCTURE
2.1 Introduction to Classes and object
2.2 Member Function

2.3 Out Side Function Line

2.4 Nested Member Function

2.5 Array within Class

2.6 Memory Aliocation

2.7 Static Member Static Member Function

2.8 Function Argument

2.9 Friend Function

Learning Ubjective
After Learning this unit you should be able to

Know the Concept of Object and Class

How memory allocate and reallocate

Member function

Able to Understand the how array use within the class

You Can use the Following Learning Viden link related to above topic_
https://www.youtube.com/watch?v=7pPtlFnBH48
https://www.youtube.com/watch?v=dkkDelx3nSU
https://www.youtube.com/watch?v=ECJ62oXDms

You Can also use the follawing Books
1.E. Balgurusawmy, Object Oriented Programming with C++, 4/e (TMH).
2. Paul Deitel, Harvey Deitel, "C++: How to Program", 9/e. Prentice Hall.

Reference Books:

1. Bjarne Stroustroup, Programming- Principles and Practice using C++,

And also you can download any book in free by using the following website.
.https://www.pdfdrive.com/

UNIT-2 35

Classes And Objects:
The main purpose of C++ progranmming is to add object orientation to the

programming language and classes are the central feature of C++ that supports object
oriented programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation
and methods for manipulating that data into one neat package. The data and functions
within a class are called members of the class.

C++Class Definitions

When you define a class, you define a blueprint for a data type. This doesnt
actually define any data, but it does define what the class name means, that is, what
an object of the class will consist of and what operations can be performed on such an

object.
A class definition starts with the keyword class followed by theclass name, andthe
class body, enclosed by a pair of curly braces. A class definition must be followed

either by a semicolon or a list of declarations. For example, we defined the Box data

type using the keyword class as follows-

class Box
public:

double/length;
double breadth;
double height // Height of a box

// Length of a box

7 Breadth of a box

The keyword public detemines the access attributes of the members of the class that

follows it A public member can be accessed from outside the class anywhere within

the scope of the class object. You can also specify the members of a class

as private or protected which we will discuss in a sub-section.

Member Function
A member function of a class is a function that has its definition or its prototype within

the cass definition like any other variable. It operates on any object of the class of

which it is a member, and has access to all the members of a class for that object.

Let us take previously defined class to access the members of the class using a

member function instead of directily accessing them-

class Box {
public:

double length;
double breadth;

double height;
double getVolume (void);// Returns box volume

// Length of a box

// Breadth of a box

// Height of a box

Member functions can be defined within the class definition or separately using scope

resolution

class. We decla, Dlueprints for objects, so basically an obje is created

are variables of basic types. Following statements declare tMwo 00jt Giasa

hen the

UwjectS
A class provides the blueprints class. We declare objects of a class with exactly the same sort of declaration no

ect is created

Box Box1;
IDeclare Box1 of type Box
/Declare Box2 of type Box

Both of the objects Box1 and Box2 will have their own copy of data members.

Box Box2;

Accessing the Data Members
he public data members of objects of a class can be accessed using the direct member access operator (,). Let us try the following example to make the things clear

#include <iostreamn>

using namespace std;

class Box. i
blic:

double length;
double breadth;

/ Length of a box
/1Breadth of a box
//Height of a box
dsoUay

double height

main main() o
Box Boxli

Box Box2;
// Declare Box1 of type Box
// Declare Box2 of type Box double volume = 0.0; /7Store the volume of a box here

// box 1 specification
Box1height = 5.0:

Box1.length = 6.0
Box1.breadth = 7.0i

// box 2 specification
Box2.height = 10.0;
Box2.length = 12.0;
Box2.breadth = 13.0;

dot fenato
ot

enafo

// volume of box 1
volume = Box1.height Box1.length Box1.breadth cout << "Volune of Box1 " << Volume <sendl;
// volume of box 2
volume = Box2.height Box2. length *Box2.breadth; cout < "Volume of Box2 " << volume <<endl; return 0;

olume ot

olume

Bated 3+ hen the above code is compiled and executed, it produces the following result olume of Boxl 210 olume of Box2 :1560
tis important to note that private and protected members can not be accessed directly
Ising direct member access operator (). We will learn how private and protected
nembers can be accessed.

lasses and Objects in Detail
so far, you have got very basic idea about C++ Classes and Objects. There are further nteresting concepts related to C++ Classes and Objects which we will discuss in
arious sub-sections listed below-

**** **.

T.No
Concept& Descrlption

Class Member Functions

A member function of a class is a function that has its definition or its prototype within the class definition like any other variable..

Class Access Modifiers

A class member can be defined as public, private or protected. By default members would be assumed as private.

Constructor& Destructor
A class constructor is a special function in a class that is called when a new object of the class is created. A destructor is also a special function which is called when created object is deleted.

Copy Constructor

The copy constructor is a constructor which creates an object by initialzing it with an obiect of the same dass, which has been created previously.

Friend Functions

A friend function is permited full access to private and protected members of a class

With an inline function, the compiler tries to expand the code in the body of the hineia
of a call to the function.

Inline Functions

Shi lace

this Pointer

Every object has a special pointer this which polnts to the object itself,

Pointer to C++ Classes

nter to a structure is. In fact a class is

A pointer to a class is done exactly the san

really just a structure with functions in it.

eated ion
class

declare class. We variables of objects of a class with exactly the same sort of declaration that class.
A class

We provides the blueprints for objects, so basically
the same

an

sort
object

iects
is created

of class

fro
B ecBre Variables of basic types. Fallawina statements declare two objecis or ciass B

Box Box1;
Declare Box1 of type Box
/iDeclare Box2 of type Box Both of the objects Box1 and Box2 will have their own copy of data members

Box Box2;

Accessing the Data Members
The public data members of objects of a class can be accessed using the O member access operator (.). Let us try the following example to make the things ice

4include <iostream>

using namespace std;

class Box. {
blic:

double length; // Length of a box
double breadth;
double height

// Breadth of a box

int main () {
-obi

etoght. //Height of a box

/[Box Boxl; /7Declare Boxl of type Box
// Declare Box2 of type Box Box Box2;

double volume = 0.0; /7Store the volume of a box here

/ box 1 specification
Box1height = 5.0;

Box1.length = 6.0

Box1.breadth = 7.0

// box 2 specifi cation

BOx2. height = 10.0;
Box2.length = 12.0;

Box2.breadth = 13.0;

ena
ot fenato

// volume of box 1
volume = Boxl. height Box1.length * Box1.breadth;

cout << "Volume of Box1:" << volume <sendl;

// volume of box 2
volume= Box2.height Box2. length * Box2.breadth;

cout < "Volume of Box2: " << volume <<endl:

return 0;

38 ed fron Member Function
A member function is defined outside the class using the ::(double colon symbo

SCope resolution operator. This Is useful when we did not want to define the function

WIthin the main program, which makes the program more understandable and easy w

that that ss Ba

he general syntax of the member function of a class outside its scope

return_type class_name member_function (arg1, arg2.. argN)

maintain.

The

types declared in the class definition of the < classname >. The scope resolution

operator (::) is used along with the class name in the header of the function definition.

It identifies the function as a member of a particular class. Without the scope

The type of member arguments in the member function must exactly match witn Ene

resolution operator, the function definition would create an ordinary function, subject

rules and scope. of access usual function to the

The following program segment shows how a member function is declared outside the

class declaration and how the object of a class is created to use the class's methods

and variables:

oy
tinclude <iostream

int sum(); 1/ Memebr Function Declaration

tde

#e

oy

using namespace std;
class TestMemberFunction

.
public:

int X, Y

int TestMemberFunction sum ()
SaellHaqo

return (x+y);

int main ()

TestMemberFunction MemberFunction1;
Member Function1.x 1;
MemberFunction1.y 2
cout << "Sum 15:

"
<« MemberFunction1. sum());

noturn a

Nesting of Member Functlons
A member functlon may call another member function wlthin Itself. This is called
nesting of member functions. A member function can access not only the public
functions but also the private functions of the class It belongs to.
Let us see an simple example of showing nesting of the member functions

include cdostream>
using names pace std;
class NestingMemberFunction

private:
int myint;

public
void set();
int get()

void NestingMemberFunction set()

myint -1

int NestingMemberFunction get ()
set ()
return myint;

int main ()

int printvariable;
NestingMemberFunct ion NestingMemberFunction1;

printvariable NestingMemberFunction1.get();
cout "The variable is: " < printvariable;

return 0

Private Member Function

A function declared inside the class's private section is known as "private
member function". A private member function is accessible through the only

public member function. (Read more: data members and member functions in

C++)

Example
In this example, there is a class named "Student", which has following data

members and member functions:

Private
Data members

rNo- to store roll number

perc
- to store percentage

o Member functions

anputOn () to print a message "Input start..." before

reading the roll number and percentage using public member

function.

nputoff() - to print a message "Input end.."after reading

the roll number and percentage using public member

function.
Public

o Member functions

read()- to read roll number and percentage of the student

print() - to print roll number and percentage of the student

Here, inputOn () and input0Ff() are the private member functions which are
calling inside public member function read().

Program:

#include <iostream>
using namespace std;

class Studentt

privatee
int rNo;
float perc;
//private member functions
void inputOn (void)

cout<"Input start... "<<endl;

void inputoff (void)

cout<<"Input end... "<<endl;

public:
//public member functions

void read (void)

//calling first member function

inputOn ();
//read rNo and perc

cout<<" Enter roll number:

cin>>rNo;

cout<<"Enter percentage: ";
cin>>perc;

//calling second member function

input0ff () ;

void print (void)

cout<<endl;
cout<<"Roll Number: "<<rNo<<endl;

cout<<"Percentage: '"<<perc<<"8"<<endl;

//Main code
int main ()

//declaring object of class student

Student std;

//reading and printing details of a student

std.read ();
std.print ();

return 0;

Arrays within a Class

Arrays can be declared as the members of a class.

The arrays can be declared as private, public or protected members of the class.

To understand the concept of arrays as members of a class, consider this example.

A program to demonstrate the concept of arrays as class member

Example
includeiostream>

const int size«5j

class studgnt

int roll_no;
int marks[size]i

public:

void getdata ();
void tot_marks ();

void student getdata ()

coutee"\nEnter roll no: "
Cin>roll_no;

for(int i-0; i«size; i+*)

cout«"Enter marks in subject"««(i+1)««"; "s cin>>marks[1];
)

void student tot_marks() 1/calculating total marks
int total-@;

for(int i-0; i«size; i++)
total+ marks[1]

cout"\n\nTotal marks "<«total;

void main() student stu;
stu.getdata()
stu.tot marks ()
getch();

Ssre Output:

Enter roll no: 101
Enter marks in subject 1: 67

Enter marks in subject 2:54

Enter marks in subject 3:68
Enter marks in subject 4: 72

Enter marks in subject 5:82

dak j

tot- MaC)

Total marks 343

FFChb
M

Memory Allocation for Obiect of Class
Once you define class it will not allocate memory space for the data member of the class. The memory allocation for the data member of the class is performed separately each time when object an of Since member functions defined inside class remains same for all objects, only memory

the class is created.

allocation of member function is performed at the time of defining the clase. Thus memory allocation is performed separately for different object of the same cass. All the data members of each object will have separate memory space.
-We can also dynamically allocate objects..As we know that Constructor is a member function of a class which is called whenever a new object is created of that class. It is used to initialize that object. Destructor is alsooa class member function which is called whenever the object goes out of scope. Destructor is used to release the memory assigned to the object. It is called in these conditions.

When a local object goes out of scope For a global object, operator is applied to a pointer to the object of the class
We again use pointers while dynamically allocating memory to objects.
Let's see an example of array of objects.
include <iostream>
using namespace std;

class A

public:
A)

cout «« "Constructor" << endl;

A)
cout «« "Destructor" <« endl;

int main()

A'a new Al4]
delete | a; / Delete array

return 0;

Static data members
data members are class members that are declared using the static keyword.
Ony one copy of the static data member in the class, even if there are many
Ciass objects. This is because all the objects share the static data member. The static
aata member is always initialized to zero when the first class object is created.
The syntax of the static data members is given as follows
static data_type data_member_name;

In the above syntax, static keyword is used. The data type is the C++ data type such as int, float etc. The data_member_name is the name provided to the data member. A program that demonstrates the static data members in C++ is given as follows-

Example
#include <iostream>

#include<string.h>
using namespace std;
class Student

private:
int rollNo;

char name[10];
int marks;

public
static int objectCount

Student() {
objectCount++

void getdata() {

cout "Enter roll number: "<<endl;
cin > rollINo;

cout < "Enter name: "<cend;

cin > name;

cout < "Enter marks: "<<endl;

cin> marks;

void putdata() {
cout"Roll Number = "<< rollNo <<endl;

coutee"Name = "<< name <<endl;

cout<"Marks = "<< marks <<endl;

coutsend;

int Student:objectCount 0;

int main(volid) (
Student s1;

s1.getdata(0
s1.putdata(0
Student s2;

s2.getdata():
s2.putdata0
Student s3;

s3.getdata0:
s3.putdata0:
cout< "Total objects created = "<< Student::objectCount «< endl;

return 0;

The output of the above program is as follows-

Enter roll number: 1
Enter name: Mark
Enter marks: 78-
Roll Number = 1.
Name= Mark.

Marks= 78

Enter roll number: 2.

Enter name: Nancy
Enter marks: 55
Roll Number 2

Name Nancy
Marks 56

Enter roll number: 3
Enter name: 8usan
Enter marks: 90
Roll Number 3
Name Susan

Marks 90

Total oblects created 3

In the

nt
he
ve program, the class student has three data members denoting the

member that con name and marks. The objectCount data member is a static data

Constructor that inS tne number of objects created of class Student. Student() is a

Constructor that increments objectCount each time a new class o0jet i

ere are2 member functions in class. The function getdata() obtains the data from tne
user and putdata() displays the data. The code snippet for this is as follows

eated

class Student {

private:

int rollNo;
char name[10]

int marks;
public:

static int objectCount

Student0
objectCount++;

void getdata0 (

cout "Enter roll number: "ccendl;
cin> rolINo;

cout << "Enter name: "'<<endl;
cin >> name;

cout < "Enter marks: "<<endl
cin >> marks;

void putdata() {
cout"Roll Number = "c< rollNo <<end;

cout"Name = "<< name <<endl;

cout"Marks = "<< marks <<endl;

cout<cendl;

each a

Obje

in the function main(), there are three objects of class Student i.e. s1, s2 and s3. r

each of these objects getdata() and putdata() are called. At the end, the vaiue o

objectCount is displayed. This is given below-

int main(void){
Student s1;

s1.getdata(0
s1.putdata0:

Student s2:

$2.getdata0:
s2.putdata(0:

Student s3

s3.getdata0:
s3.putdata0:

cout Total objects created =
" <« Student::objectCount «< endl;

return 0;

Constructors in C++
What is constructor?
A Constructor is a member function of a class which initializes objects of a class. In C+*, Constructo=
automatically called when object(instance of class) create. It is special member function of the class 1. program to i1lustrate the I/ conoept of Constructors #include <iostream>

using namespace std;

class construct
public:

int a, b;

//Default Constructor
construct ()

b 20:

int main()

I Default constructor called automatically 1/ when the object is created construct c;
cout << "a: " << c.a << endl

<"b:" < C.b;
return 1;

QUTPUT

A 10
B: 20
Parameterized Constructors:
It is possible to pass arguments to constructors. Typically, these arguments help initialize an object when it is created. To create a parameterized constructor, simply add parameters to it the way you would to any other function. When you define the constructor's body, use the parameters to initialize the object.

2. // CPP program to illustrate
I/ parame terized constructors
#include <iostream>
using name space std;

class Point
private:

int x, Yi

public
1/ Parameterized Constructor
Point (int x1, int y1)

*l

y yl;

return x;

int getY 0

ctor is return yY

int main ()

/ Constructor called

Point p1 (10, 15)

// Access values assigned by constructor

cout < "pl.x " << pl.getX() << ", pl.y - " << pl.get¥):

return 0

Output
p1.x16 p1y 15

Destructors in C++

What is destructor?

Destructor is a member function which destructs or deletes an object.When is destructor caled?

A destructor function is called automaticaly when the object goes out of scope:

(1) the function ends

(2) the program ends

(3) a block containing local variables ends

(4) a delete operator is called

How
destructors are different from a normal member function?

Destructors have same name as the class preceded by a tilde (")

Destructors don't take any argument and don't return anything

class String

private
char *s;

int size;

public:
String (char *) ; 1/

constructor

String):
// destructor

'String: : String (char *c)

size - strlen (c);

s new char [size+1] ;

strcpy(s,c)i

String::-3tring ()

delete (0s;

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

